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The stability of synchronized states �frequency locked states� in networks of phase oscillators is investigated
for several network topologies. It is shown that for some topologies there is more than one stable synchronized
state according to the sign of coupling strength between oscillators. It is also shown that in some cases the
synchronized state corresponds to zero order parameter.
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I. INTRODUCTION

Synchronization of a population of interacting oscillators
has been the subject of many investigations in recent years
�1�. The motivation for such research comes from the wide
range of examples and applications of synchronization in
real world. Synchronization phenomenon is a property of
several biological, physical, chemical, and social systems
�2–4�.

The mathematical model for synchronization of phase os-
cillators was proposed by Winfree �5� and Kuramoto �6,7�. In
this paper we follow the Kuramoto model in which the phase
oscillators are coupled nonlinearly to each other �through a
sine function�.

One of the interesting questions in the Kuramoto model is
the stability of solutions, both synchronized and incoherent
states. In this paper, by a synchronized state we mean a state
in which all of the oscillators oscillate with the same fre-
quency �this is also called a frequency locked state�. The
question of stability is addressed by Kuramoto himself and
many authors for several physical cases such as stability in
presence of noise �1,9,10�, stability of coupled identical os-
cillators �11,12�, stability of all to all coupled oscillators with
arbitrary frequency distribution �8�, and stability of globally
coupled oscillators with nonsinusoidal coupling �3�. Here we
investigate the stability of synchronized state in three kinds
of networks, namely all-to-all network, bipartite network,
and semibipartite network �13�. In each of these networks we
consider two cases for frequency distribution: the case of
identical oscillators and the case of two types of oscillators
which are called unimodal and bimodal frequency distribu-
tions, respectively. A bipartite network of oscillators is im-
portant when we deal with oscillators of two different kinds
and couplings are present only between oscillators of differ-
ent kinds. Another importance of bipartite networks is the
case of lattices. Some lattices, such as two dimensional
square lattice and honeycomb, are bipartite graphs. If only
nearest neighbor couplings are considered, then they are also
a bipartite network of coupled oscillators. These are espe-
cially important in studying lattices of Josephson junctions
and laser arrays �1�. A semibipartite network is a model for a
network with a highly connected center. Such networks are

of importance in studying neural networks, biological neural
systems, and models of memory �14�. The results obtained in
this paper are exact and independent of the system size.

The organization of the paper is as follows. In Sec. II we
introduce the Kuramoto model for an arbitrary network and
give the definition of frequency locked state and the method
of checking the stability. In Secs. III and IV we explore the
cases of unimodal and bimodal frequency distributions in the
above mentioned networks, respectively. Section V is de-
voted to summary and concluding remarks.

II. THE KURAMOTO MODEL ON AN ARBITRARY
NETWORK

The Kuramoto model on a network of N phase oscillators
is given by the following equations:

�̇i = �i + �
j=1

N

Kij sin�� j − �i�, i = 1, . . . ,N , �1�

where Kij is the coupling strength between ith and jth oscil-
lators which is assumed to be symmetric, i.e., Kij =Kji. A
solution of Eq. �1� will be denoted by �i

� , i=1,2 , . . . ,N. It
should be mentioned that the solution is not necessarily
unique. Furthermore, a solution may correspond to a syn-
chronized state or an incoherent state. In this paper we will
focus on solutions which correspond to synchronized states.
As mentioned in the Introduction, a synchronized state is one
in which all of the oscillators are of the same frequency. We
are going to investigate the stability of this solution. To this
end we perturb the solution slightly, i.e., �i=�i

�+�i, and then
find the equation of motion for �is to the first order and check
the Lyaponov exponents, i.e., eigenvalues of the matrix of
coefficients of �is. The solution is stable if there is no posi-
tive exponent. It is straightforward to see that Eq. �1� leads to
the following equation for �is:

�̇i = �
j=1

N

Kij cos�� j
� − �i

���� j − �i� , �2�

which may be written in a more elegant way:

�̇ = �� , �3�

where �= ��1 ,�2 , . . . ,�N�t and �=M −D with Mij

=Kij cos�� j
�−�i

�� and D=diag�d1 ,d2 , . . . ,dN� where di

=� j=1
N Mij. If none of the eigenvalues of � are positive then
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the solution is stable. It may seem strange that in the stability
criterion there is no �i. In fact, the effect of �is can be traced
in the solution �i

� which of course depends on �is. In subse-
quent sections we will use this criterion to investigate the
stability of a synchronized state for three networks, namely
all-to-all network, bipartite network, and semibipartite net-
work. As for the frequency distribution we take two cases:
identical oscillators and two kinds of oscillators.

Throughout this paper we will assume that Kij =
K
NAij

where A is the adjacency matrix of the network. This means
that coupling strength is identical for all couples of linked
oscillators. To fix the notation we define the Laplacian matrix
of a network by L=D−A where D is a diagonal matrix with
Dii=� j=1

N Aij. The Laplacian matrix of any network is semi-
positive definite, i.e., its eigenvalues are non-negative. This is
shown in the Appendix.

III. UNIMODAL FREQUENCY DISTRIBUTION

An oscillator is identified by its intrinsic frequency.
Therefore the term identical oscillators means that all of the
oscillators have the same intrinsic frequency. In such a case
one can go to a reference frame in which the intrinsic fre-
quencies of oscillators are zero and the frequency distribu-
tion function of oscillators is f���=����. Therefore Eq. �1�
reads

�̇i = �
j=1

N

Kij sin�� j − �i�, i = 1, . . . ,N . �4�

A synchronized state in this reference frame will be charac-
terized by �=0. Therefore the solutions of the following
equation correspond to synchronized states:

�
j=1

N

Kij sin�� j − �i� = 0, i = 1, . . . ,N . �5�

The simplest solution is one with all oscillators in the same
phase �i=�� , i=1,2 , . . . ,N. We call this solution the trivial
solution. It is easily seen that for this solution �=− K

NL. As
the eigenvalues of the Laplacian are non-negative, the trivial
solution is stable �unstable� for K�0 �K�0�. In the follow-
ing subsections we try to find nontrivial solutions.

A. All-to-all network

If the network is all to all then Eq. �5� reads

K

N
�
j=1

N

sin�� j − �i� = 0, i = 1, . . . ,N . �6�

This equation may have many solutions. To find the solutions
we use the order parameter which is defined as

rei� =
1

N
�
j=1

N

ei�j . �7�

Using this definition in Eq. �6� one arrives at

r sin�� − �i� = 0, i = 1, . . . ,N . �8�

Therefore there are two types of solutions: r=0 and
sin��−�i�=0.

Case 1: r=0. In this case D=− K
NI according

to Eq. �7� and therefore �ij =
K
Ncos�� j

�−�i
��. By

defining ct= �cos �1
� , cos �2

� , . . . , cos �N
� � and st

= �sin �1
� , sin �2

� , . . . , sin �N
� �, � may be written as

�= K
N �cct+sst� which is clearly semipositive �seminegative�

definite for K�0 �K�0�. Therefore for K�0 these solutions
are stable although the order parameter is exactly zero.

Case 2: sin��−�i�=0. There are many nontrivial solutions
in this case. In fact, each oscillator can take the phase value
� or �+	. Without loss of generality a nontrivial solution
may be written in the following general form:

�i = �0 1 
 i 
 N0

	 N0 + 1 
 i 
 N
� , �9�

and the matrix of coefficients will be

� =
K

N
��J + �N	 − N0�I�N0

− LN0�N	

− LN	�N0

t �J − �N	 − N0�I�N	

	 , �10�

where N0 and N	 are the number of oscillators with zero and
	 phase values, respectively. The matrix J is a square matrix
with all elements equal to 1. Here �say� MN stands for the
square matrix M which is of dimension N. The matrix L is a
N0�N	 matrix with all elements equal to 1 and Lt is it trans-
posed. The matrix I is the identity matrix. Using Eq. �A2� of
the Appendix the eigenvalues of � are

Spec��� = 
K

N
�N − 2N0� −

K

N
�N − 2N0� K 0

N0 − 1 N − N0 − 1 1 1
� , �11�

where the first row are eigenvalues and the second row their
multiplicity. It should be mentioned that Eq. �11� is not cor-
rect for N0=0 and N0=N. In fact, these two cases give the
trivial solution which is already discussed. A special case is
N	=N0. In this case all of the eigenvalues of � are zero
except one of them which is K and therefore this solution is
stable for K�0. In fact, in this case r=0 and this solution
also belongs to case 1. If N	�N0 the spectrum of � shows
that the solution is always unstable because of some positive
eigenvalues, i.e., K

N �N−2N0� or − K
N �N−2N0�.

B. Bipartite network

Some of the networks in real world have the structure of
bipartite networks such as collaboration networks and some
neural networks �15,16�. This fact has motivated several in-
vestigations on bipartite structures in complex networks in
recent years. The reader may refer for example to Refs.
�17,18�. In a bipartite network there are two kinds of nodes
and only nodes of different kinds may connect to each other.
If N1 and N2 are the number of two kinds of nodes, respec-
tively, then the adjacency matrix of a bipartite network can
be written in off block diagonal form,
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A = � 0 L

Lt 0
	 , �12�

where L is a N1�N2 matrix with zero and one elements.
There is an important nontrivial solution in which the os-

cillators in one part are in phase �=0 and oscillators in the
second part are in phase �=	. In this case �= K

NL and the
solution is stable �unstable� for K�0 �K�0�.

In a bipartite network the trivial solution and the above
mentioned nontrivial solution may be named as ferromag-
netic �FM� and antiferromagnetic �AFM� solutions, respec-
tively. In fact, in the trivial solution all oscillators are in
phaselike spins in a ferromagnetic material, but in nontrivial
solution the adjacent oscillators are in opposite phases like
spins in an antiferromagnetic material. It is worth noting that
depending the sign of the coupling constant �K� only one of
these solutions is stable. Positive �negative� K is like an at-
tractive �repelling� force between oscillators in agreement
with FM and AFM names for trivial and nontrivial solutions.

C. Semibipartite network

A semibipartite network �13� is constructed from two
parts. The first part which is called center of the network is
completely connected, i.e., there is a link between every two
nodes. This part of the network is a complete graph. The
nodes of the second part are called peripheral nodes. There
are some links between the nodes of the first part �central
nodes� and the nodes of the second part �peripheral nodes�,
but there is no link between the nodes of the second part
�peripheral nodes are not connected together directly�. Such
a network can be the model of a network with a highly con-
nected center such as a computer network in which there are
some server computers which are all connected together and
some client computers which are connected to some of the
server computers but there is no direct link between two
client computers. Another example is a neural network with
a center �say brain� in which almost all neurons are con-
nected to each other and some peripheral neurons which are
not connected to each other but all of them have some con-
nections with the neurons of brain.

In this paper we only consider complete semibipartite net-
works where each peripheral node is connected to all central
nodes. The adjacency matrix of such a network is

A = ��J − I�Nc�Nc
LNc�Np

LNp�Nc

t 0
	 . �13�

Here J is a matrix in which all of its elements are 1 and I is
the identity matrix. Nc and Np are the number of central and
peripheral nodes, respectively, and Nc+Np=N.

An important nontrivial synchronized solution is

�i = �0 1 
 i 
 Nc

	 Nc � i 
 N
� . �14�

The matrix � for this solution is

� =
K

N
�J − �Nc − Np�I − L

− Lt NcI
	 , �15�

where L is a Nc�Np matrix with all elements equal to 1. The
spectrum of � is

Spec��� = 
K

N
�N − 2Nc�

K

N
Nc K 0

Nc − 1 Np − 1 1 1
� . �16�

Therefore for K�0 this solution is always unstable. For
K�0 the solution is stable if Np�Nc. An important special
case is Nc=1 �a star�. In this case some in phase oscillators
are connected to a center which is in opposite phase and this
state is stable because of a repelling coupling constant.

IV. BIMODAL FREQUENCY DISTRIBUTION

In this section we consider networks of two types of os-
cillators. Since in our formulation each oscillator is identified
by its frequency, without loss of generality, one can assume
that the oscillators are of frequencies � and −�. One can do
this by going to an appropriate rotating reference frame. This
is called bimodal frequency distribution �9�. In subsequent
subsections we consider three kinds of networks of Sec. II
with bimodal frequency distribution.

From Eq. �1� it can be easily seen that ��̇i=��i. There-

fore in a synchronized state with �̇i= we have = 1
N ��i

= : �̄

A. All-to-all network

In this section we consider a complete network with two
types of oscillators with frequencies � and −�. We are seek-
ing solutions in which all of the oscillators rotate with the
same frequency say . Suppose that the number of oscilla-
tors with frequency � is N+ and the number of oscillators
with frequency −� is N−. We define �=

N+

N for convenience.
Then if one also uses Eq. �7�, the equations of motion read

 = � � + Kr sin�� − �i� 1 
 i 
 N+

− � + Kr sin�� − �i� N+ � i 
 N
� , �17�

Equation �17� and the fact that = �2�−1�� yield

�i = ��+ 1 
 i 
 N+

�− N+ � i 
 N
,� �18�

where sin��+−�−�= 2�
K = :sin �. This gives an important

condition for the existence of synchronized solutions:
�K��Kc : =2�. In Fig. 1 the time evolution of the order pa-
rameter is shown for three values of K. The synchronized
state is achieved for �K��Kc. Putting this solution into the
definition of the order parameter one gets

r2 = �2 + �1 − ��2 + 2��1 − ��cos � . �19�

In Fig. 2 the time evolution of the order parameter is
shown for two values of sin �. The complete agreement with
Eq. �19� is clear. Next we examine the stability of this solu-
tion. To this end we construct the matrix �,
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� =
K

N
� J − �+I cos �L

cos �Lt J − �−I
	 , �20�

where ��= �N�+N�cos ��. The spectrum of � is

Spec��� = 
−
K

N
�+ −

K

N
�− − K cos � 0

N+ − 1 N− − 1 1 1
� . �21�

The condition sin��+−�−�= 2�
K for solutions says that

��+−�−� may take two values: sin−1 2�
K and 	−sin−1 2�

K . In the
first case cos ��0 and in the second case cos ��0. There-
fore we must take into account these two possibilities when
we look for stable solutions. It is clear that if cos ��0
then all eigenvalues of � are negative �positive� for K�0
�K�0� and therefore the solution is stable �unstable� for
K�0 �K�0�. If cos ��0 then for K�0 there is always a
positive eigenvalue and the solution is unstable. For K�0 if
we want all eigenvalues to be negative or zero then we

should have cos �=−1. This is possible only if �=0 which is
not the case in bimodal frequency distribution. Therefore for
cos ��0 there is no stable solution.

B. Bipartite network

In this section we consider only a complete bipartite net-
work. In a complete bipartite network each node of one part
is connected to all nodes of the other part. For this network
the equations of motion take the form

�i = � +
K

N
� j=N++1

N
sin�� j − �i�; 1 
 i 
 N+

− � +
K

N
� j=1

N+ sin�� j − �i�; N+ � i 
 N� . �22�

Then defining two partial order parameters r+ and r−,

r+ei�+ =
1

N+
�
j=1

N+

ei�j, r−ei�− =
1

N−
�

j=N++1

N

ei�j , �23�

we arrive at

 = �� + �1 − ��Kr− sin��− − �i� 1 
 i 
 N+

− � + �Kr+ sin��+ − �i� N+ � i 
 N
� . �24�

Then we get

�i = ��+ 1 
 i 
 N+

�− N+ � i 
 N
� , �25�

where sin��+−�−�= 2�
K . Using Lemma 1 of the Appendix and

the adjacency matrix of a bipartite network, Eq. �12�, it can
be seen that for K cos ��0 �K cos ��0� the solutions are
stable �unstable�. The order parameter is clearly obtained
from Eq. �19�. In Fig. 3 the time evolution of the order pa-
rameter is shown for two values of sin � which is in agree-
ment with Eq. �19�. It should be noted that a bipartite net-
work has many other stable solutions �this is the subject of
further investigations�, but not all of them correspond to a
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FIG. 1. �Color online� Time evolution of order parameter in an
all-to-all network with 100 nodes and bimodal frequency distribu-
tion with �=5 and �=0.3 for three values of coupling constant:
K�Kc, K=Kc, and K�Kc.
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FIG. 2. �Color online� Time evolution of order parameter in an
all-to-all network with 100 nodes and bimodal frequency distribu-
tion with �=5 and �=0.6 for two values of sin �.
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FIG. 3. �Color online� Time evolution of order parameter in a
bipartite network with 40 and 60 nodes in its two parts, respec-
tively, and bimodal frequency distribution with �=5 and �=0.4 for
two values of sin �.
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synchronized state as introduced in this paper. Therefore in
running the computer program one may arrive at different
final �not necessarily synchronized� states depending on the
choice of initial values of phases.

C. Semibipartite network

In this subsection we consider a complete semibipartite
network. In a complete semibipartite network each periph-
eral node is connected to all central nodes. We assume that
nodes 1 ,2 , . . . ,Nc are central and nodes Nc+1, . . . ,N are pe-
ripheral. For this network the equations of motion take the
form

�i =  � +
K

N
� j=1

N
sin�� j − �i�; 1 
 i 
 Nc

− � +
K

N
� j=1

Nc sin�� j − �i�; Nc � i 
 N� . �26�

Then defining central and peripheral order parameters rc and
rp,

rce
i�c =

1

Nc
�
j=1

Nc

ei�j, rpei�p =
1

Np
�

j=Nc+1

N

ei�j , �27�

we arrive at

 = �� + Kr sin���i� 1 
 i 
 Nc

− � + �Krc sin��c − �i� Nc � i 
 N
� . �28�

Then we get

�i = ��+ 1 
 i 
 Nc

�− Nc � i 
 N
� , �29�

where sin��+−�−�= 2�
K . The matrix � is

� =
K

N
� J − �cI cos �L

cos �Lt − �pI
	 , �30�

where �c= �Nc+Np cos �� and �p=Nc cos �. The spectrum of
� is

Spec��� = 
−
K

N
�c −

K

N
�p − K cos � 0

Nc − 1 Np − 1 1 1
� . �31�

Again for cos ��0 the solution is always stable �unstable�
for K�0 �K�0�. For cos ��0 if K�0 there is a positive
eigenvalue and the solution is unstable. If K�0 then to have
all eigenvalues nonpositive the condition cos ��−

Nc

Np
must

be satisfied. This can be satisfied only if the number of pe-
ripheral nodes is greater than the number of central nodes.
For stable solutions the final order parameter is obtained
from Eq. �19�. Figure 4 shows the time evolution of the order
parameter for three values of coupling constants. The starting
point of the order parameter is 1. This is because of the
choice of initial values. The important point is that in stable
cases the final values agree with Eq. �19�.

V. SUMMARY AND CONCLUSIONS

In this paper we studied the stability of synchronized
states �which are defined as frequency locked states in this
paper� in three kinds of networks of phase oscillators,
namely complete �all-to-all� network, bipartite network, and
semibipartite network. We considered two kinds of fre-
quency distributions: unimodal and bimodal delta function
distributions. We showed that according to the sign of cou-
pling strength between oscillators which may be interpreted
as attracting or repelling force, there may exist various stable
synchronized states. In some of the stable solutions the order
parameter is zero. In the case of bipartite networks a similar-
ity between stable solutions for different signs of coupling
strength and FM and AFM states in magnetic systems is
addressed. Our results on stability are independent of the size
of the network, namely the number of oscillators N. Among
the networks investigated in this paper, complete bipartite
and complete semibipartite networks may be considered as
extreme cases of networks which can be distinguished by a
parameter called bipartivity parameter and the path to a syn-
chronized state may depend on this parameter. In Ref. �19�
bipartivity of networks is investigated and a bipartivity pa-
rameter is introduced. In this paper we did not investigate the
stability of the synchronized state in scale-free networks
which are of considerable importance in network theory.
This is the subject of further investigations. The results are
physically reach and with many different features which will
be published elsewhere �20�.

APPENDIX

In this Appendix some mathematical relations used in the
paper are summarized in two lemmas.

Lemma 1. Suppose that M is a square N�N symmetric
matrix with non-negative elements. Then the eigenvalues of
D−M are non-negative where D=diag�d1 ,d2 , . . . ,dN� with
di=� j=1

N Mij.
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FIG. 4. �Color online� Time evolution of order parameter in a
semibipartite network with 100 nodes �40 central nodes� and bimo-
dal frequency distribution with �=5 and �=0.4 for three values of
coupling constant.
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Proof. Construct a weighted network with N nodes. Give
weight �Mij to link �ij� �note that in general a node may
have a link with itself�. Give an arbitrary direction to links.
Construct the incidence matrix B as follows: B is a N�L

matrix where L=
N�N−1�

2 is the number of links. The element
BiJ is zero if node i is not any end point of the of link J.
It is �MJ if node i is the beginning point of link J and −�MJ
if it is the end point of link J. It is easily seen that D−M
=BBt. In this form it is clear that the eigenvalues of D−M
are non-negative.

Lemma 2. Consider a matrix � of the form

� = ��aJ + bI�M kLM�N

kLN�M
t �cJ + dI�N

	 , �A1�

where J is a square matrix whose all elements are 1, I is the
identity matrix, and L is an M �N matrix whose all elements

are 1. a, b, c, d, and k are real parameters. Then the eigen-
values of � are

Spec��� = � b d �+ �−

M − 1 N − 1 1 1
	 , �A2�

where ��= 1
2 �t+��t−

2 +4MNk2� with t�= �Ma+b�� �Nc+d�.
Proof. Eigenvalues are the roots of the characteristic

equation det��−�I�=0. With the help of properties of the
determinant which is invariant under some matrix operation
it is straightforward �although perhaps lengthy� to show di-
rectly that the eigenvalues of Eq. �A1� are given by Eq. �A2�.
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